วันพฤหัสบดีที่ 9 พฤศจิกายน พ.ศ. 2560

รับซ่อมแผงวงจรเตาแม่เหล็กไฟฟ้าทุกยี่ห้อทุกรุ่นทุกอาการ

I-AD. = 300 mV DC //Voltage output (for an ADC) corresponding to the average current from the AC line

V-AD. 3.00 -V DC // Voltage output corresponding to the AC input voltage
GND. 0 VDC// The Low-voltage ground to run the control circuitry. WE USE THIS.
+5V. 5 Volt supply for the control circuitry. WE USE THIS.
INT. Square wave output of the first comparator. Tells the micro the duty cycle. We don’t use it
PWM. 20KHZ DUTY PWM CYCLE 10-80 % From MCU TO Power Board // Variable // Power control line. Usually takes a PWM from the micro, but we will drive with a DC voltage. WE USE THIS.
PAN. = 5VDC TO MCU // TUsed to strike the switching. WE USE THIS.
K. ON/OFF = +5 VDC control.From MCU TO Power Board WE USE THIS. ENT Enable GATE DRIVE IGBT 20 Amps 1200 Volts
FAN. Fan control. Probably should use it, but don’t right now.
BUZ. Buzzer? Not used.
T_IGBT. = 150 mv DC//A thermistor tied to the IGBT’s for overtemp monitoring. Currently unused.
T_PAN. = 150 mV //Another (optional) thermistor near the pan for overtemp monitoring. Currently unused.
Now here’s your 2-minute overview of manual control for this device.

Tie K to +5V to enable the device, or to a switch for on/off control.
Apply an analog voltage (about 0-3V) to the PWM line to adjust the power. We use a potentiometer.
Strike the device by pulling the PAN line high momentarily.
Simple, eh? So what’s all this “striking” business we keep talking about? Well basically, since the system is self-oscillating, it uses the ringing on SW to decide when to start a new cycle. If SW is not oscillating, it’s happy to just stay still. In order to get the system running, we must disturb it using the PAN line and force it to start a cycle. After that first cycle, the resonant ringing on SW will allow it to self oscillate and Bob’s your uncle – you’ve got an induction heater!

So let’s do it. Please double, and triple check that the AC cord is disconnected and the capacitors have had time to drain before playing around in the circuitry. We’re assuming that you’ve already cut the ribbon cable and identified the 5 lines you’ll need (GND, +5V, PWM, PAN, K).

For simplicity, let’s just tie K to +5V for now. That will enable the device any time the AC line is plugged in. Good enough for our needs.

To adjust the power level, you can use a 10k potentiometer between +5V and GND whose center tap (the adjustable node) is tied to PWM. The working range on PWM is about 0.5V minimum to 3v maximum. If you go too low, the device will lose self-oscillation and you’ll have to restrike. If you go too high, then the cycles will self-terminate at about the level they would at 3v. You may also lose oscillation. So keep it around 1/3 to 2/3 and you should be able to sweep the power level from a few hundred watts to the full 1.8kW. We’ve gotten away with pots as high as 100k, but internally there is a 200k resistor to GND which will end up acting as a voltage divider to limit your maximum V(PWM). That might be a feature to prevent over-revving, actually!

The strike requires a momentary pushbutton switch, connected from +5V to the PAN line. When you tap this switch, it whacks the TOPREF and SWREF nodes in such a way as to force the first comparator ON, which tricks the device into starting a cycle. There is already a 22k pulldown resistor from PAN to GND, so it doesn’t matter if you push and hold the strike button or just tap it, it will decay back to 0V pretty quick so all that is needed is a pullup. It’s the sharp rising edge of PAN that does the deed, so a momentary pushbutton switch is the perfect thing to do this.

The timing is not critical – that ugly startup noise we described in the first article is the micro banging this line tens of thousands of times in a row. So for you – it’s probably OK to tap it a couple of times, but you don’t want to sit there whacking on it for too long – you are forcing a cycle every time you tap the switch and the switches don’t want to be forced on when the SW node is at it’s 1200V resonant peak. We’ve never killed any switches with our manual striking, but we can tell you that repeating striking while the device is running is simply not a nice thing to do to your induction heater.

So there you have it: Enable, set power level, and strike. Easy as pie.

It’s certainly possible to unwind the pancake coil and rewind it around a piece of PVC or something in order to get a cylindrical coil for heating rods, etc. Keep in mind that the lacquer used may chip off and give some risk of breaking the insulation. Exposed coil wiring is something you definitely would not want to touch with either your hand, or the piece of metal you are heating.

More details are just around the corner when the new unit arrives – stay tuned, and good luck!
สมพงศ์ อินดัสเตรียล อิเล็กทรอนิคส์ 
ขั้นแรกทำการแปลไฟ220VAC ให้เป็น DC ประมาณ400 V เพื่อเลี้ยงวงจรกำเนืดความถี่สูงประมาณ 24 KHz ซึ่งตัวกำเนืดความถี่นี้จะสามารถปรับความถี่ได้ โดยขับไปยังชุดขดลวดแม่เหล็ก โดยใช้อุปกรณ์ประเภท IGBT เป็นตัวขับ Power

ไม่มีความคิดเห็น:

แสดงความคิดเห็น